Last updated: 2023-04-05

Checks: 7 0

Knit directory: GlobalStructure/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20230404) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version baf2fd4. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rproj.user/
    Ignored:    1_Raw/.DS_Store
    Ignored:    2_Derived/.DS_Store
    Ignored:    3_Results/.DS_Store
    Ignored:    renv/library/
    Ignored:    renv/staging/

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/figure_2b.Rmd) and HTML (docs/figure_2b.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd baf2fd4 Evgenii O. Tretiakov 2023-04-05 Start workflowr project.

1: READ VICTOR’s FILE

Rep <- read.table(
    here(data_dir, "Homo_sapiens_triangles.txt"),
    sep = "\t",
    header = FALSE
)
names(Rep) <- c(
    "DelStart",
    "DelEnd",
    "DelLength",
    "MasterRepeat",
    "AlternRepeats1",
    "AlternRepeats2",
    "AlternRepeats3",
    "AlternRepeats4"
)

MasterRepeat is a repeat with arms located close to given deletion breakpoints AlternativeRepeats1-4 are repeats where: first arm == arm1 of Master; first arm == arm2 of Master; second arm == arm1 of Master; second arm == arm2 of Master; mb_del == realised deletions (exist in MitoBreak); non_del - non realised deletions == don’t exist in MitoBreak

2: filter out deletions within major arc:

  • OH: 110-441
  • OL: 5721-5781
nrow(Rep)
[1] 880
Rep <- Rep[Rep$DelStart > 5781 &
    Rep$DelStart < 16569 &
    Rep$DelEnd > 5781 &
    Rep$DelEnd < 16569, ]
nrow(Rep)
[1] 703

3: concatenate all alternative deletions

Rep$AllAlternRepeats <- paste(
    Rep$AlternRepeats1,
    Rep$AlternRepeats2,
    Rep$AlternRepeats3,
    Rep$AlternRepeats4,
    sep = ","
)
Rep$AllAlternRepeats <- gsub("\\,\\[\\]\\,", ",", Rep$AllAlternRepeats)
Rep$AllAlternRepeats <- gsub("^\\[", "", Rep$AllAlternRepeats)
Rep$AllAlternRepeats <- gsub("\\]$", "", Rep$AllAlternRepeats)

4: prepare dataset for analysis of realized and nonrealized deletions line by line

Rep$CenterOfRealizedRepeats <- 0
Rep$CenterOfNonRealizedRepeats <- 0

Rep$LengthOfRealizedRepeats <- 0
Rep$LengthOfNonRealizedRepeats <- 0

Rep$StartOfRealizedRepeats <- 0
Rep$StartOfNonRealizedRepeats <- 0

Rep$EndOfRealizedRepeats <- 0
Rep$EndOfNonRealizedRepeats <- 0

for (i in (1:nrow(Rep))) {
    # i = 1
    # format of data to get a dataset of master and all alternative repeats for each deletion (for each line of the dataset)
    temp <- Rep[i, ]
    AltRep <- unlist(strsplit(temp$AllAlternRepeats, "\\]\\,\\["))
    AltRep <- AltRep[AltRep != ""]
    AltRep <- data.frame(AltRep)
    names(AltRep) <- c("WholeLine")
    if (nrow(AltRep) > 0) {
        AltRep$RepeatType <- "alternative"
        AltRep$WholeLine <- as.character(AltRep$WholeLine)

        MasterRepeat <- as.character(temp$MasterRepeat)
        MasterRepeat <- gsub("^\\[", "", MasterRepeat)
        MasterRepeat <- gsub("\\]$", "", MasterRepeat)

        MasterRepeat <- paste(MasterRepeat, "mb_del", sep = " ")
        MasterRepeat <- data.frame(MasterRepeat)
        names(MasterRepeat) <- c("WholeLine")
        MasterRepeat$RepeatType <- "master"

        AllRep <- rbind(MasterRepeat, AltRep)
        ReturnFifth <- function(x) {
            unlist(strsplit(x, " "))[5]
        }
        AllRep$RealisedRepeat <- apply(as.matrix(AllRep$WholeLine), 1, FUN = ReturnFifth)
        ReturnFirst <- function(x) {
            as.numeric(unlist(strsplit(x, " "))[1])
        }
        AllRep$RepStart <- apply(as.matrix(AllRep$WholeLine), 1, FUN = ReturnFirst)
        ReturnSecond <- function(x) {
            as.numeric(unlist(strsplit(x, " "))[2])
        }
        AllRep$RepEnd <- apply(as.matrix(AllRep$WholeLine), 1, FUN = ReturnSecond)
        AllRep <- AllRep[AllRep$RepStart > 5781 &
            AllRep$RepStart < 16569 &
            AllRep$RepEnd > 5781 &
            AllRep$RepEnd < 16569, ]
        if (nrow(AllRep) > 0) {
            AllRep$Center <- (AllRep$RepEnd - AllRep$RepStart) / 2 + AllRep$RepStart
            Rep$CenterOfRealizedRepeats[i] <- mean(AllRep[AllRep$RealisedRepeat == "mb_del", ]$Center)
            Rep$CenterOfNonRealizedRepeats[i] <- mean(AllRep[AllRep$RealisedRepeat == "non_del", ]$Center)

            AllRep$Length <- AllRep$RepEnd - AllRep$RepStart
            Rep$LengthOfRealizedRepeats[i] <- mean(AllRep[AllRep$RealisedRepeat == "mb_del", ]$Length)
            Rep$LengthOfNonRealizedRepeats[i] <- mean(AllRep[AllRep$RealisedRepeat == "non_del", ]$Length)

            Rep$StartOfNonRealizedRepeats[i] <- mean(AllRep[AllRep$RealisedRepeat == "non_del", ]$RepStart)
            Rep$StartOfRealizedRepeats[i] <- mean(AllRep[AllRep$RealisedRepeat == "mb_del", ]$RepStart)

            Rep$EndOfNonRealizedRepeats[i] <- mean(AllRep[AllRep$RealisedRepeat == "non_del", ]$RepEnd)
            Rep$EndOfRealizedRepeats[i] <- mean(AllRep[AllRep$RealisedRepeat == "mb_del", ]$RepEnd)

            if (i == 1) {
                FinalAllRep <- AllRep
            }
            if (i > 1) {
                FinalAllRep <- rbind(FinalAllRep, AllRep)
            }
        }
    }
}
nrow(Rep) # 703
[1] 703
Rep <- Rep[Rep$CenterOfRealizedRepeats > 0, ]
nrow(Rep) # 643
[1] 643
Rep <- Rep[Rep$CenterOfNonRealizedRepeats > 0, ] # it means there is at least one extra (third) arm to analyze
nrow(Rep) # 643
[1] 643
Rep <- Rep[!is.na(Rep$LengthOfRealizedRepeat), ] # 618
nrow(Rep)
[1] 618

5: Copare position of repeats with realized deletions vs rest repeats

## center is a bit higher in realized repeats
wilcox.test(Rep$CenterOfRealizedRepeats,
    Rep$CenterOfNonRealizedRepeats,
    paired = TRUE
) # significant

    Wilcoxon signed rank test with continuity correction

data:  Rep$CenterOfRealizedRepeats and Rep$CenterOfNonRealizedRepeats
V = 114853, p-value = 1.506e-05
alternative hypothesis: true location shift is not equal to 0
t.test(Rep$CenterOfRealizedRepeats,
    Rep$CenterOfNonRealizedRepeats,
    paired = TRUE
) # significant

    Paired t-test

data:  Rep$CenterOfRealizedRepeats and Rep$CenterOfNonRealizedRepeats
t = 4.619, df = 617, p-value = 4.696e-06
alternative hypothesis: true mean difference is not equal to 0
95 percent confidence interval:
 162.6072 403.1435
sample estimates:
mean difference 
       282.8754 
summary(Rep$CenterOfRealizedRepeats)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
   8590   10634   11334   11500   12409   15647 
summary(Rep$CenterOfNonRealizedRepeats)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
   7021   10292   11290   11217   12196   15889 
boxplot(Rep$CenterOfRealizedRepeats,
    Rep$CenterOfNonRealizedRepeats,
    notch = TRUE,
    names = c(
        "CenterOfRealizedRepeats",
        "CenterOfNonRealizedRepeats"
    )
)

RepReal <- Rep %>%
    select(
        Realized = CenterOfRealizedRepeats,
        NonRealized = CenterOfNonRealizedRepeats
    ) %>%
    gather(., Realized, NonRealized,
        key = "Deletion",
        value = "CenterOfRepeats"
    )

pltViolRepCenterRelease <- ggstatsplot::ggbetweenstats(
    data = RepReal,
    x = Deletion,
    y = CenterOfRepeats,
    notch = TRUE,
    # show notched box plot
    mean.ci = TRUE,
    # whether to display confidence interval for means
    k = 5,
    # number of decimal places for statistical results
    # outlier.tagging = TRUE, # whether outliers need to be tagged
    # outlier.label = ContactZone, # variable to be used for the outlier tag
    xlab = "Realisation of deletion",
    # label for the x-axis variable
    ylab = "Center of Repeats",
    # label for the y-axis variable
    title = "The effect of repeats' position on deletion realisation",
    # title text for the plot
    ggtheme = ggthemes::theme_fivethirtyeight(),
    # choosing a different theme
    ggstatsplot.layer = FALSE,
    # turn off `ggstatsplot` theme layer
    package = "wesanderson",
    # package from which color palette is to be taken
    palette = "Royal1",
    # choosing a different color palette
    messages = TRUE
)
# Note: Shapiro-Wilk Normality Test for Center of Repeats: p-value = 0.003
# Note: Bartlett's test for homogeneity of variances for factor Realisation of deletion: p-value = < 0.001
cowplot::save_plot(
    plot = pltViolRepCenterRelease,
    base_height = 8,
    base_asp = 1.618,
    file = normalizePath(
        file.path(plots_dir, "violin_rep_center_release.pdf")
    )
)

pltViolRepCenterRelease

6: Copare length of repeats with realized deletions vs rest repeats

## deletion is longer in realized repeats
wilcox.test(
    Rep$LengthOfRealizedRepeats,
    Rep$LengthOfNonRealizedRepeats,
    paired = TRUE
) # significant

    Wilcoxon signed rank test with continuity correction

data:  Rep$LengthOfRealizedRepeats and Rep$LengthOfNonRealizedRepeats
V = 175286, p-value < 2.2e-16
alternative hypothesis: true location shift is not equal to 0
t.test(
    Rep$LengthOfRealizedRepeats,
    Rep$LengthOfNonRealizedRepeats,
    paired = TRUE
) # significant

    Paired t-test

data:  Rep$LengthOfRealizedRepeats and Rep$LengthOfNonRealizedRepeats
t = 24.481, df = 617, p-value < 2.2e-16
alternative hypothesis: true mean difference is not equal to 0
95 percent confidence interval:
 1837.842 2158.412
sample estimates:
mean difference 
       1998.127 
summary(Rep$LengthOfRealizedRepeats) # 5643  mean
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
     18    4420    5501    5643    7066    9682 
summary(Rep$LengthOfNonRealizedRepeats) # 3450 Median 3645 mean
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
     12    2767    3450    3645    4489    8950 
summary(Rep$LengthOfRealizedRepeats - Rep$LengthOfNonRealizedRepeats) # 1998 mean
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
  -4890     585    2116    1998    3335    7416 
boxplot(Rep$LengthOfRealizedRepeats,
    Rep$LengthOfNonRealizedRepeats,
    notch = TRUE,
    names = c(
        "LengthOfRealizedRepeats",
        "LengthOfNonRealizedRepeats"
    )
)

RepReal <-
    Rep %>%
    select(
        Realized = LengthOfRealizedRepeats,
        NonRealized = LengthOfNonRealizedRepeats
    ) %>%
    gather(., Realized, NonRealized,
        key = "Deletion",
        value = "DistanceBetweenRepeats"
    ) %>%
    full_join(., RepReal)

pltViolRepFlankLengthRelease <-
    ggstatsplot::ggbetweenstats(
        data = RepReal,
        x = Deletion,
        y = DistanceBetweenRepeats,
        notch = TRUE,
        # show notched box plot
        mean.ci = TRUE,
        # whether to display confidence interval for means
        k = 5,
        # number of decimal places for statistical results
        # outlier.tagging = TRUE, # whether outliers need to be tagged
        # outlier.label = ContactZone, # variable to be used for the outlier tag
        xlab = "Realisation of deletion",
        # label for the x-axis variable
        ylab = "Distance between Repeats",
        # label for the y-axis variable
        title = "The effect of repeats' distance on deletion realisation",
        # title text for the plot
        ggtheme = ggthemes::theme_fivethirtyeight(),
        # choosing a different theme
        ggstatsplot.layer = FALSE,
        # turn off `ggstatsplot` theme layer
        package = "wesanderson",
        # package from which color palette is to be taken
        palette = "Royal1",
        # choosing a different color palette
        messages = TRUE
    )
# Note: Bartlett's test for homogeneity of variances for factor Realisation of deletion: p-value = < 0.001
cowplot::save_plot(
    plot = pltViolRepFlankLengthRelease,
    base_height = 8,
    base_asp = 1.618,
    file = normalizePath(
        file.path(plots_dir, "violin_rep_flanked_length_release.pdf")
    )
)

pltViolRepFlankLengthRelease

7: Start of repeats comparison for realized deletions vs rest repeats

## start and end in realized versus non-realized repeats
wilcox.test(Rep$StartOfRealizedRepeats,
    Rep$StartOfNonRealizedRepeats,
    paired = TRUE
) # significant

    Wilcoxon signed rank test with continuity correction

data:  Rep$StartOfRealizedRepeats and Rep$StartOfNonRealizedRepeats
V = 44922, p-value < 2.2e-16
alternative hypothesis: true location shift is not equal to 0
t.test(Rep$StartOfRealizedRepeats,
    Rep$StartOfNonRealizedRepeats,
    paired = TRUE
) # significant

    Paired t-test

data:  Rep$StartOfRealizedRepeats and Rep$StartOfNonRealizedRepeats
t = -9.2587, df = 617, p-value < 2.2e-16
alternative hypothesis: true mean difference is not equal to 0
95 percent confidence interval:
 -868.0955 -564.2809
sample estimates:
mean difference 
      -716.1882 
summary(Rep$StartOfRealizedRepeats) # mean 8678: 25%: 7401 - 75% 9764:
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
   5810    7401    8472    8678    9764   15638 
quantile(Rep$StartOfRealizedRepeats, 0.1) # 6465
 10% 
6465 
quantile(Rep$StartOfRealizedRepeats, 0.9) # 10954
  90% 
10954 
summary(Rep$StartOfNonRealizedRepeats) # mean 9394
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
   5873    8330    9112    9394   10434   15718 
summary(Rep$StartOfNonRealizedRepeats - Rep$StartOfRealizedRepeats) # mean 716 => non realised start later (~700 bp): 9394 - 8678
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
-6137.0  -303.1   393.0   716.2  1797.4  7416.5 

8: End of repeats comparison for realized deletions vs rest repeats

wilcox.test(Rep$EndOfRealizedRepeats, Rep$EndOfNonRealizedRepeats, paired = TRUE) # significant

    Wilcoxon signed rank test with continuity correction

data:  Rep$EndOfRealizedRepeats and Rep$EndOfNonRealizedRepeats
V = 125093, p-value < 2.2e-16
alternative hypothesis: true location shift is not equal to 0
t.test(Rep$EndOfRealizedRepeats, Rep$EndOfNonRealizedRepeats, paired = TRUE) # significant

    Paired t-test

data:  Rep$EndOfRealizedRepeats and Rep$EndOfNonRealizedRepeats
t = 18.41, df = 617, p-value < 2.2e-16
alternative hypothesis: true mean difference is not equal to 0
95 percent confidence interval:
 1145.196 1418.682
sample estimates:
mean difference 
       1281.939 
summary(Rep$EndOfRealizedRepeats) # 14321 mean
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
  10970   13696   14124   14321   15362   16274 
summary(Rep$EndOfNonRealizedRepeats) # 13039 mean
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
   7451   12132   13270   13039   13992   16261 
summary(Rep$EndOfNonRealizedRepeats - Rep$EndOfRealizedRepeats) # mean -1281=> non realised end earlier (~1300 bp): 13039 - 14321
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
-7334.5 -2198.6  -934.2 -1281.9     0.0  4890.0 
quantile(Rep$EndOfRealizedRepeats, 0.1) # 13286
    10% 
13286.6 
quantile(Rep$EndOfRealizedRepeats, 0.9) # 15863
    90% 
15863.4 

9: Visualize it in terms of X(start) and Y(end)

plot(
    FinalAllRep[FinalAllRep$RealisedRepeat == "non_del", ]$RepStart,
    FinalAllRep[FinalAllRep$RealisedRepeat == "non_del", ]$RepEnd,
    pch = 16,
    col = "grey",
    xlim = c(5781, 16569),
    ylim = c(16569, 5781),
    xlab = "",
    ylab = ""
)
par(new = TRUE)
plot(
    FinalAllRep[FinalAllRep$RealisedRepeat == "mb_del", ]$RepStart,
    FinalAllRep[FinalAllRep$RealisedRepeat == "mb_del", ]$RepEnd,
    pch = 16,
    col = "red",
    xlim = c(5781, 16569),
    ylim = c(16569, 5781),
    xlab = "Start",
    ylab = "End"
)

# Visualise difference between density distributions of realized vs non-realized repeats.
sp <- ggplot(
  FinalAllRep,
  aes(
    RepStart,
    RepEnd
  )
) +
  aes(colour = RealisedRepeat) +
  geom_point() +
  scale_y_reverse() +
  theme_minimal(17) +
  xlab("5’") +
  ylab("3’") +
  scale_x_continuous(breaks = c(15000, 12000, 9000, 6000), position = "bottom") +
  scale_color_manual(
    values = c("red", "grey"),
    labels = c(
      "Realized repeats",
      "Non-realized repeats"
    )
  ) +
  theme(
    legend.position = "bottom",
    legend.title = element_blank(),
    legend.box = "horizontal"
  )

gg_realised <-
  ggExtra::ggMarginal(
    sp,
    type = "density",
    margins = "both",
    size = 3,
    groupColour = TRUE,
    groupFill = TRUE
  )

cowplot::save_plot(here(plots_dir, "real-vs-nonreal-repeats.svg"), gg_realised, base_asp = 0.868, base_height = 7)
wilcox.test(FinalAllRep[FinalAllRep$RealisedRepeat == "mb_del", ]$RepStart, FinalAllRep[FinalAllRep$RealisedRepeat == "non_del", ]$RepStart)

    Wilcoxon rank sum test with continuity correction

data:  FinalAllRep[FinalAllRep$RealisedRepeat == "mb_del", ]$RepStart and FinalAllRep[FinalAllRep$RealisedRepeat == "non_del", ]$RepStart
W = 1354700, p-value = 1.299e-07
alternative hypothesis: true location shift is not equal to 0
wilcox.test(FinalAllRep[FinalAllRep$RealisedRepeat == "mb_del", ]$RepEnd, FinalAllRep[FinalAllRep$RealisedRepeat == "non_del", ]$RepEnd)

    Wilcoxon rank sum test with continuity correction

data:  FinalAllRep[FinalAllRep$RealisedRepeat == "mb_del", ]$RepEnd and FinalAllRep[FinalAllRep$RealisedRepeat == "non_del", ]$RepEnd
W = 2151564, p-value < 2.2e-16
alternative hypothesis: true location shift is not equal to 0
FinalAllRep$RealisedRepeat <- as.factor(FinalAllRep$RealisedRepeat)
summary(FinalAllRep$RealisedRepeat)
 mb_del non_del 
    902    3391 

10: Enrichment of repeats realised as a deletion in the contact zone

StartA <- 6000 # 7000
StartB <- 9000 # 10000
EndA <- 13000
EndB <- 16000
R.In <- nrow(Rep[Rep$StartOfRealizedRepeats >= StartA &
    Rep$StartOfRealizedRepeats <= StartB &
    Rep$EndOfRealizedRepeats >= EndA &
    Rep$EndOfRealizedRepeats <= EndB, ])
R.Out <- nrow(Rep[(Rep$StartOfRealizedRepeats < StartA |
    Rep$StartOfRealizedRepeats > StartB) |
    (Rep$EndOfRealizedRepeats < EndA |
        Rep$EndOfRealizedRepeats > EndB), ])
R.In + R.Out # 324 + 294 = 618
[1] 618
NR.In <- nrow(Rep[Rep$StartOfNonRealizedRepeats >= StartA &
    Rep$StartOfNonRealizedRepeats <= StartB &
    Rep$EndOfNonRealizedRepeats >= EndA &
    Rep$EndOfNonRealizedRepeats <= EndB, ])
NR.Out <- nrow(Rep[(Rep$StartOfNonRealizedRepeats < StartA |
    Rep$StartOfNonRealizedRepeats > StartB) |
    (Rep$EndOfNonRealizedRepeats < EndA |
        Rep$EndOfNonRealizedRepeats > EndB), ])
NR.In + NR.Out # 79 + 598 = 618
[1] 618
X <- cbind(c(R.In, R.Out), c(NR.In, NR.Out))
fisher.test(X) # odds 7.5, p-value < 2.2e-16

    Fisher's Exact Test for Count Data

data:  X
p-value < 2.2e-16
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
  5.615152 10.113074
sample estimates:
odds ratio 
  7.505642 

Visualize it as mosaic plot

X <- data.frame(X)
names(X) <- c("R", "NR")
row.names(X) <- c("IN", "OUT")
mosaicplot(X, main = "")

Figure 2B:

gg_realised

Visualise difference between density distributions of realized vs non-realized repeats.


sessionInfo()
R version 4.2.2 (2022-10-31)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 22.04.1 LTS

Matrix products: default
BLAS:   /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices datasets  utils     methods   base     

other attached packages:
 [1] ggpubr_0.6.0    here_1.0.1      lubridate_1.9.2 forcats_1.0.0  
 [5] stringr_1.5.0   dplyr_1.1.1     purrr_1.0.1     readr_2.1.4    
 [9] tidyr_1.3.0     tibble_3.2.1    ggplot2_3.4.2   tidyverse_2.0.0
[13] workflowr_1.7.0

loaded via a namespace (and not attached):
 [1] fs_1.6.1               insight_0.19.1         httr_1.4.5            
 [4] rprojroot_2.0.3        tools_4.2.2            backports_1.4.1       
 [7] bslib_0.4.2            utf8_1.2.3             R6_2.5.1              
[10] statsExpressions_1.5.0 colorspace_2.1-0       withr_2.5.0           
[13] tidyselect_1.2.0       processx_3.8.0         compiler_4.2.2        
[16] git2r_0.31.0           textshaping_0.3.6      performance_0.10.2    
[19] cli_3.6.1              prismatic_1.1.1        labeling_0.4.2        
[22] bayestestR_0.13.0      sass_0.4.5             scales_1.2.1          
[25] mvtnorm_1.1-3          callr_3.7.3            pbapply_1.7-0         
[28] systemfonts_1.0.4      digest_0.6.31          svglite_2.1.1         
[31] rmarkdown_2.21         pkgconfig_2.0.3        htmltools_0.5.5       
[34] fastmap_1.1.1          highr_0.10             ggthemes_4.2.4        
[37] rlang_1.1.0            rstudioapi_0.14        shiny_1.7.4           
[40] farver_2.1.1           jquerylib_0.1.4        generics_0.1.3        
[43] jsonlite_1.8.4         car_3.1-2              magrittr_2.0.3        
[46] parameters_0.20.2      patchwork_1.1.2        Matrix_1.5-3          
[49] Rcpp_1.0.10            munsell_0.5.0          fansi_1.0.4           
[52] abind_1.4-5            lifecycle_1.0.3        stringi_1.7.12        
[55] whisker_0.4.1          yaml_2.3.7             carData_3.0-5         
[58] grid_4.2.2             paletteer_1.5.0        ggrepel_0.9.3         
[61] parallel_4.2.2         promises_1.2.0.1       miniUI_0.1.1.1        
[64] lattice_0.20-45        cowplot_1.1.1          hms_1.1.3             
[67] zeallot_0.1.0          knitr_1.42             ps_1.7.4              
[70] pillar_1.9.0           ggsignif_0.6.4         effectsize_0.8.3      
[73] glue_1.6.2             evaluate_0.20          getPass_0.2-2         
[76] renv_0.17.2            vctrs_0.6.1            tzdb_0.3.0            
[79] httpuv_1.6.9           MatrixModels_0.5-1     gtable_0.3.3          
[82] BayesFactor_0.9.12-4.4 rematch2_2.1.2         datawizard_0.7.1      
[85] cachem_1.0.7           ggExtra_0.10.0         xfun_0.38             
[88] mime_0.12              xtable_1.8-4           correlation_0.8.3     
[91] broom_1.0.4            coda_0.19-4            rstatix_0.7.2         
[94] later_1.3.0            ragg_1.2.5             ggstatsplot_0.11.0    
[97] timechange_0.2.0       ellipsis_0.3.2